top of page



Variations in lineage and phenotype diversity can emerge due to various factors. As phylogenetic comparative methods advance and detailed phylogenies become more accessible, we're exploring fresh theories about how organisms diversify. I'm actively involved in research projects in this topic, that involve diet diversification in anurans and rodents, ecomorphological specializations and their relationship with diversity in rodents, marsupial diversification and color patterns, among others. More to come soon!


Missagia, R. V., Casali, D. M., Patterson, B.D., Perini, F.A. Decoupled patterns of diversity and disparity characterize an ecologically specialized lineage of Neotropical cricetids. Evolutionary Biology v. 50, p. 181-196.

Rates of morphological evolution of the skull of Akodontini rodents plotted over the phylomorphospace, from Missagia et al. 2023


Due to its functional role in masticatory dynamics, the skull of vertebrates presents aspects of its morphology defined by trophic ecology. Rodents, the most successful group of living mammals, present a cranial morphology characteristic of herbivores. However, several rodent species feed on invertebrates, developing morphological adaptations on their skull to meet the demands of feeding on live prey. By using comparative morphological descriptions (Missagia & Perini 2018) and CTscans of still poorly investigated morphological complexes (masticatory musculature and endocranium, Missagia et al. in prep), addressing functional morphology (Missagia et al. 2021), and applying phylogenetic comparative methods, we can understand how ecological pressures can shape the evolution of the skull of predatory rodents.


Missagia, R. V., Patterson, B.D., Krentzel, D., Perini, F.A. Insectivory leads to functional convergence in a group of Neotropical rodents. Journal of Evolutionary Biology v. 34, p. 391-402., 2021.


Skull of Blarinomys breviceps from Missagia & Perini 2018. Drawings by Bárbara Rossi.

CTscan of Oxymycterus delator, showing masticatory muscles and the endocranium.



Stable isotopes have emerged as a powerful estimation tool for trophic ecology, helping to quantify feeding interactions and understand ecosystem processes. We analyzed stable isotope data from akodontine rodents distributed throughout South America (Missagia et al. 2019), representing the first macroecological study of diet with this proxy in rodents, which allowed us to discuss the diversity of trophic niches within the group. Stable isotopes can also be used to study the ecology of fossil specimens, allowing us to propose paleoenvironmental and paleoecological reconstructions (Dantas et al. 2020) 


Akodon mollis feeding on an earthworm. Photo by Jorge Brito.

Stable isotopes

Dantas, M. A. T., Missagia, R. V., Parisi Dutra, R., Raugust, T., Silva, L. A., Delicio, M. P., Renó, R., Cherkinsky, A. Isotopic paleoecology (δ13C) from mammals from IUIU/BA and paleoenvironmental reconstruction (δ13C, δ18O) for the Brazilian intertropical region through the late Pleistocene. Quaternary Science Reviews, v. 242, p. 106469, 2020.

Missagia, R. V., Patterson, B. D., Perini, F. A. Stable isotope signatures and the trophic diversification of akodontine rodents. Evolutionary Ecology, v. 34, p. 1-18, 2019.


South America has a mammal fauna that has been shaped by several biogeographic and geological processes (e.g. Great American Biotic Interchange). We are interested in studying the systematics and taxonomy of some groups of South American artiodactyls (Parisi Dutra et al. 2016, 2017), as well as in proposing paleoenvironmental reconstructions (Dantas et al. 2020)


Gasparini, G. M., Parisi Dutra, R., Perini, F. A., Croft, D. A., Cozzuol, M. A., Missagia, R. V., Lucas, S. GOn the Supposed Presence of Miocene Tayassuidae and Dromomerycinae (Mammalia, Cetartiodactyla) in South America. American Museum Novitates, v. 3968, p. 1-27, 2021.

Dantas, M. A. T., Missagia, R. V., Parisi Dutra, R., Raugust, T., Silva, L. A., Delicio, M. P., Renó, R., Cherkinsky, A. Isotopic paleoecology (δ13C) from mammals from IUIU/BA and paleoenvironmental reconstruction (δ13C, δ18O) for the Brazilian intertropical region through the late Pleistocene. Quaternary Science Reviews, v. 242, p. 106469, 2020.

Parisi Dutra, R., Missagia, R. V., Perini, F. A., Cozzuol, M. A., Gasparini, G. M., Guedes, P., Salles, L. Fossil peccaries of Late Pleistocene/Holocene (Cetartiodactyla, Tayassuidae) from underwater caves of Serra da Bodoquena (Mato Grosso do Sul State, Brazil). Historical Biology, v. 29, p. 85-92, 2017.


Parisi Dutra, R., Casali, D. M., Missagia, R. V., Gasparini, G. M., Perini, F. A., Cozzuol, M. A. Phylogenetic Systematics of Peccaries (Tayassuidae: Cetartiodactyla) and a Classification of South American Tayassuids. Journal of Mammalian Evolution. v. 24, p. 345-358, 2017.


Missagia, R. V.Parisi Dutra, R., Cozzuol, M. A. Morphometry of Catagonus stenocephalus (Lund in Reinhardt 1880) (CETARTIODACTYLA:TAYASSUIDAE) and taxonomical considerations about Catagonus Ameghino 1904. Lundiana, v. 12, p. 39-44, 2016.


Gasparini, G. M., Rodriguez, S. G., Soibelzon, L. H., Beilinson, E., Soibelson, E., Missagia, R. V. Tayassu pecari (Link, 1795) (Mammalia, Cetartiodactyla): comments on its South American fossil record, taxonomy and paleobiogeography. Historical Biology, v. 26, p. 1-16, 2013.


Phylogeny of Tayassuidae from Parisi Dutra et al. 2017.

bottom of page